Arithmetic Series
6 March 2018 · Filed in TutorialArithmetic series
A series is the sum of a sequence
seq = {1,2,3,4,5,6,...,n}
sum1 = 1+2+3+4 ... n
sum2 = n + (n-1) + (n-2) + (n-3) ..
sum1+sum2 = (n+1) + (n+1) + (n+1) + (n+1) ...
2sum = n(n+1);
sum = n(n+1)/2
n - last
1 - first
Arithmetic sequences
A sequence is an ordered list of elements
seq = {1,5,9,13..}
f(n) = 1 + 4(n-1)
sum of seq
d = 4
a = 1
sum1 = a + (a + d) + (a + 2d) + (a + 3d) + ... + (a + (n-1)d)
sum2 = (a + (n-1)d) + (a + (n-2)d) + (a + (n-3)d) + .. (a + (n - z)d)
sum3 = sum1 + sum2 = a + (a + (n-1)d) + (a + d) + (a + (n-2)d) ....
sum3 = 2a + (n-1)d + 2a + (n-1)d.... = n(2a+(n-1)d)
sum = (2a+(n-1)d)/2
n( a + a + (n-1)d) / 2
first half a/2 + last haft (a + (n-1)d)/2 multiply n times
Example 1
11+20+29+...+4052
Solution 1
d = 9
a = 11
11 + 9(n-1) = 4052
9n = 4050
n = 450
Solution 2
(4052-11)/9=449
from 11 to reach 4052 you nead 499 steps
add first step 450 steps
The sum of a series
sum = (2a+(n-1)d)/2
((2x11 + (550-1)x9/2) x 450
((11+4052)/2)x450
Example 2
10+(−1)+(−12)+...+(−10,979)=
10-11(n-1) = - 10979
n = 1000
((10 +(-10979))/2)x1000 = -5484500
Example 3
k=1
∑ (−5k+12)= ?
275
−5k+12=7 k=1
−5k+12=-1363 k=275
sum = ((-1363+7)/2)x275 = -186450
Geometric series
a = first term
r = common ratio
n = # of terms
Sn = sum of n terms
Sn = a + ar + ar^2 + ... ar^n-1
-rSn = -ra - ar^2 - ... - ar^n
Sn - rSn = a - ar^n
Sn(1-r) = a - ar^n
Sn = (a-ar^n )/1-r